Non-invasive activation of optogenetic actuators.
نویسندگان
چکیده
The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-of-principle studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining light-sensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.
منابع مشابه
Comparative analysis of optogenetic actuators in cultured astrocytes
Astrocytes modulate synaptic transmission via release of gliotransmitters such as ATP, glutamate, D-serine and L-lactate. One of the main problems when studying the role of astrocytes in vitro and in vivo is the lack of suitable tools for their selective activation. Optogenetic actuators can be used to manipulate astrocytic activity by expression of variants of channelrhodopsin-2 (ChR2) or othe...
متن کاملPhotoreceptor engineering
Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic...
متن کاملNon-Scanning Fiber-Optic Near-Infrared Beam Led to Two-Photon Optogenetic Stimulation In-Vivo
Stimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon o...
متن کاملStimulating Neurons with Heterologously Expressed Light-Gated Ion Channels.
Heterologous expression of ion channels that can be directly gated by light has made it possible to stimulate almost any excitable cell with light. Optogenetic stimulation has been particularly powerful in the neurosciences, as it allows the activation of specific, genetically defined neurons with precise timing. Organotypic hippocampal slice cultures are a favored preparation for optogenetic e...
متن کاملRole of Neuromodulation and Optogenetic Manipulation in Pain Treatment
Neuromodulation, including invasive and non-invasive stimulation, has been used to treat intractable chronic pain. However, the mechanisms by which neuromodulation produces antinociceptive effect still remain uncertain. Optogenetic manipulation, a recently developed novel approach, has already proven its value to clinicians by providing new insights into mechanisms of current clinical neuromodu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 8928 شماره
صفحات -
تاریخ انتشار 2014